EconPapers    
Economics at your fingertips  
 

The evolution of periodic waves of the coupled nonlinear Schrödinger equations

S.C. Tsang and K.W. Chow

Mathematics and Computers in Simulation (MATCOM), 2004, vol. 66, issue 6, 551-564

Abstract: Systems of coupled nonlinear Schrödinger equations (CNLS) arise in several branches of physics, e.g., hydrodynamics and nonlinear optics. The Hopscotch method is applied to solve CNLS numerically. The algorithm is basically a finite difference method but with a special procedure for marching forward in time. The accuracy of the scheme is ensured as the system is proved to satisfy certain conserved quantities. Physically, the goal is to study the effects of an initial phase difference on the evolution of periodic, plane waves. The outcome will depend on the precise nature of the cubic nonlinearity, or in physical terms, the nature of polarization in optical applications.

Keywords: Coupled nonlinear Schrödinger equations; Hopscotch method; Periodic waves (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475404001326
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:66:y:2004:i:6:p:551-564

DOI: 10.1016/j.matcom.2004.04.002

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:66:y:2004:i:6:p:551-564