Applications of singular-value decomposition (SVD)
Alkiviadis G. Akritas and
Gennadi I. Malaschonok
Mathematics and Computers in Simulation (MATCOM), 2004, vol. 67, issue 1, 15-31
Abstract:
Let A be an m×n matrix with m≥n. Then one form of the singular-value decomposition of A is A=UTΣV,where U and V are orthogonal and Σ is square diagonal. That is, UUT=Irank(A), VVT=Irank(A), U is rank(A)×m, V is rank(A)×n and Σ=σ10⋯000σ2⋯00⋮⋮⋱⋮⋮00⋯σrank(A)−1000⋯0σrank(A)is a rank(A)×rank(A) diagonal matrix. In addition σ1≥σ2≥⋯≥σrank(A)>0. The σi’s are called the singular values of A and their number is equal to the rank of A. The ratio σ1/σrank(A) can be regarded as a condition number of the matrix A.
Keywords: Applications; Singular-value decompositions; Hanger; Stretcher; Aligner (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847540400151X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:67:y:2004:i:1:p:15-31
DOI: 10.1016/j.matcom.2004.05.005
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().