EconPapers    
Economics at your fingertips  
 

Applications of singular-value decomposition (SVD)

Alkiviadis G. Akritas and Gennadi I. Malaschonok

Mathematics and Computers in Simulation (MATCOM), 2004, vol. 67, issue 1, 15-31

Abstract: Let A be an m×n matrix with m≥n. Then one form of the singular-value decomposition of A is A=UTΣV,where U and V are orthogonal and Σ is square diagonal. That is, UUT=Irank(A), VVT=Irank(A), U is rank(A)×m, V is rank(A)×n and Σ=σ10⋯000σ2⋯00⋮⋮⋱⋮⋮00⋯σrank(A)−1000⋯0σrank(A)is a rank(A)×rank(A) diagonal matrix. In addition σ1≥σ2≥⋯≥σrank(A)>0. The σi’s are called the singular values of A and their number is equal to the rank of A. The ratio σ1/σrank(A) can be regarded as a condition number of the matrix A.

Keywords: Applications; Singular-value decompositions; Hanger; Stretcher; Aligner (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847540400151X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:67:y:2004:i:1:p:15-31

DOI: 10.1016/j.matcom.2004.05.005

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:67:y:2004:i:1:p:15-31