Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation
G.M. Muslu and
H.A. Erbay
Mathematics and Computers in Simulation (MATCOM), 2005, vol. 67, issue 6, 581-595
Abstract:
The generalized nonlinear Schrödinger (GNLS) equation is solved numerically by a split-step Fourier method. The first, second and fourth-order versions of the method are presented. A classical problem concerning the motion of a single solitary wave is used to compare the first, second and fourth-order schemes in terms of the accuracy and the computational cost. This numerical experiment shows that the split-step Fourier method provides highly accurate solutions for the GNLS equation and that the fourth-order scheme is computationally more efficient than the first-order and second-order schemes. Furthermore, two test problems concerning the interaction of two solitary waves and an exact solution that blows up in finite time, respectively, are investigated by using the fourth-order split-step scheme and particular attention is paid to the conserved quantities as an indicator of the accuracy. The question how the present numerical results are related to those obtained in the literature is discussed.
Keywords: Split-step method; Fourier method; Generalized nonlinear Schrödinger equation; Solitary waves (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847540400254X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:67:y:2005:i:6:p:581-595
DOI: 10.1016/j.matcom.2004.08.002
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().