Considering the attractor structure of chaotic maps for observer-based synchronization problems
G. Millerioux,
F. Anstett and
G. Bloch
Mathematics and Computers in Simulation (MATCOM), 2005, vol. 68, issue 1, 67-85
Abstract:
The main purpose of this paper is to state some sufficient conditions for global synchronization of chaotic maps. The synchronization is viewed as a state reconstruction problem which is tackled by polytopic observers. Unlike most standard observers, polytopic observers can account for a special property of chaotic dynamics. Indeed, it is shown that many chaotic maps can be described in a so-called convexified form, involving a time-varying parameter which depends on the chaotic state vector. Such a form makes it possible to incorporate knowledge on the structure of the compact set wherein the parameter lies. This set depends implicitly on the structure of the chaotic attractor. It is proved that the conservatism of the polyquadratic stability conditions for the state reconstruction, stated in a companion paper, can be reduced when the corresponding Linear Matrix Inequalities involve the vertices of the minimal convex hull of this set. Theoretical developments along with special emphasis on computational aspects are provided and illustrated in the context of adaptive synchronization.
Keywords: Polytopic observers; Chaos synchronization; Minimal convex hull (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475404002605
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:68:y:2005:i:1:p:67-85
DOI: 10.1016/j.matcom.2004.10.001
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().