Solution quality of random search methods for discrete stochastic optimization
Mahmoud H. Alrefaei and
Ameen J. Alawneh
Mathematics and Computers in Simulation (MATCOM), 2005, vol. 68, issue 2, 115-125
Abstract:
In this paper, we propose a framework for selecting a high quality global optimal solution for discrete stochastic optimization problems with a predetermined confidence level using general random search methods. This procedure is based on performing the random search algorithm several replications to get estimate of the error gap between the estimated optimal value and the actual optimal value. A confidence set that contains the optimal solution is then constructed and methods of the indifference zone approach are used to select the optimal solution with high probability. The proposed procedure is applied on a simulated annealing algorithm for solving a particular discrete stochastic optimization problem involving queuing models. The numerical results indicate that the proposed technique indeed locate a high quality optimal solution.
Keywords: Stochastic programming; Simulation optimization; Simulated annealing; Random search (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475404002745
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:68:y:2005:i:2:p:115-125
DOI: 10.1016/j.matcom.2004.10.004
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().