Numerical simulation of two-dimensional sine-Gordon solitons via a split cosine scheme
Q. Sheng,
A.Q. M. Khaliq and
D.A. Voss
Mathematics and Computers in Simulation (MATCOM), 2005, vol. 68, issue 4, 355-373
Abstract:
This paper proposes a split cosine scheme for simulating solitary solutions of the sine-Gordon equation in two dimensions, as it arises, for instance, in rectangular large-area Josephson junctions. The dispersive nonlinear partial differential equation allows for soliton-type solutions, a ubiquitous phenomenon in a large variety of physical problems. The semidiscretization approach first leads to a system of second-order nonlinear ordinary differential equations. The system is then approximated by a nonlinear recurrence relation which involves a cosine function. The numerical solution of the system is obtained via a further application of a sequential splitting in a linearly implicit manner that avoids solving the nonlinear scheme at each time step and allows an efficient implementation of the simulation in a locally one-dimensional fashion. The new method has potential applications in further multi-dimensional nonlinear wave simulations. Rigorous analysis is given for the numerical stability. Numerical demonstrations for colliding circular solitons are given.
Keywords: Sine-Gordon equation; Solitons; Cosine scheme; Sequential splitting; Linear stability (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475405000480
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:68:y:2005:i:4:p:355-373
DOI: 10.1016/j.matcom.2005.02.017
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().