Related commodity markets and conditional correlations
Clinton Watkins and
Michael McAleer
Mathematics and Computers in Simulation (MATCOM), 2005, vol. 68, issue 5, 567-579
Abstract:
Related commodity markets have two characteristics: (i) they may be expected to follow similar volatility processes; (ii) such markets are frequently represented by a market aggregate or index. Indices are used to represent the performance and aggregate time series properties of a group of markets. An important issue regarding the time series properties of an index is how the index reflects the corresponding properties of its components, particularly with regard to volatility and risk. This paper investigates the volatility of a market index relative to the volatility of its underlying assets by analysing correlation matrices derived from rolling AR(1)-generalised autoregressive conditional heteroskedasticity (GARCH)(1,1) model estimates. The second moment properties of a linear aggregate of ARMA processes with GARCH errors are analysed and compared with the properties of the individual returns series. Empirical application is made to the markets for non-ferrous metals on the London Metal Exchange (LME). The volatility of the LME Base Metals Index (LMEX) is modelled and compared with the volatility of the 3-month futures contracts for aluminium, copper, lead, nickel, tin, and zinc.
Keywords: GARCH; Volatility; Cross-sectional aggregation; Futures contracts (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475405000479
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:68:y:2005:i:5:p:567-579
DOI: 10.1016/j.matcom.2005.02.016
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().