Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs
A.L. Islas and
C.M. Schober
Mathematics and Computers in Simulation (MATCOM), 2005, vol. 69, issue 3, 290-303
Abstract:
Several recently developed multisymplectic schemes for Hamiltonian PDEs have been shown to preserve associated local conservation laws and constraints very well in long time numerical simulations. Backward error analysis for PDEs, or the method of modified equations, is a useful technique for studying the qualitative behavior of a discretization and provides insight into the preservation properties of the scheme. In this paper we initiate a backward error analysis for PDE discretizations, in particular of multisymplectic box schemes for the nonlinear Schrödinger equation. We show that the associated modified differential equations are also multisymplectic and derive the modified conservation laws which are satisfied to higher order by the numerical solution. Higher order preservation of the modified local conservation laws is verified numerically.
Keywords: Multisymplectic schemes; Hamiltonian PDEs; Backward error analysis (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475405000200
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:69:y:2005:i:3:p:290-303
DOI: 10.1016/j.matcom.2005.01.006
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().