EconPapers    
Economics at your fingertips  
 

Local Lagrangian formalism and discretization of the Heisenberg magnet model

D. Karpeev and C.M. Schober

Mathematics and Computers in Simulation (MATCOM), 2005, vol. 69, issue 3, 304-321

Abstract: In this paper we develop the Lagrangian and multisymplectic structures of the Heisenberg magnet (HM) model which are then used as the basis for geometric discretizations of HM. Despite a topological obstruction to the existence of a global Lagrangian density, a local variational formulation allows one to derive local conservation laws using a version of Nöther’s theorem from the formal variational calculus of Gelfand-Dikii. Using the local Lagrangian form we extend the method of Marsden, Patrick and Schkoller to derive local multisymplectic discretizations directly from the variational principle. We employ a version of the finite element method to discretize the space of sections of the trivial magnetic spin bundle N=M×S2 over an appropriate space-time M. Since sections do not form a vector space, the usual FEM bases can be used only locally with coordinate transformations intervening on element boundaries, and conservation properties are guaranteed only within an element. We discuss possible ways of circumventing this problem, including the use of a local version of the method of characteristics, non-polynomial FEM bases and Lie-group discretization methods.

Keywords: Multisymplectic structure; Geometric integrators; Finite element methods (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475405000212
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:69:y:2005:i:3:p:304-321

DOI: 10.1016/j.matcom.2005.01.007

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:69:y:2005:i:3:p:304-321