The KdV hierarchy and the propagation of solitons on very long distances
H. Leblond
Mathematics and Computers in Simulation (MATCOM), 2005, vol. 69, issue 3, 368-377
Abstract:
The Korteweg-de Vries (KdV) equation is first derived from a general system of partial differential equations. An analysis of the linearized KdV equation satisfied by the higher order amplitudes shows that the secular-producing terms in this equation are the derivatives of the conserved densities of KdV. Using the multi-time formalism, we prove that the propagation on very long distances is governed by all equations of the KdV hierarchy. We compute the soliton solution of the complete hierarchy, which allows to give a criterion for the existence of the soliton.
Keywords: KdV hierarchy; Higher order KdV; Reductive perturbation (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475405000248
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:69:y:2005:i:3:p:368-377
DOI: 10.1016/j.matcom.2005.01.010
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().