Exploding soliton and front solutions of the complex cubic–quintic Ginzburg–Landau equation
J.M. Soto-Crespo and
Nail Akhmediev
Mathematics and Computers in Simulation (MATCOM), 2005, vol. 69, issue 5, 526-536
Abstract:
We present a study of exploding soliton and front solutions of the complex cubic–quintic Ginzburg–Landau (CGLE) equation. We show that exploding fronts occur in a region of the parameter space close to that where exploding solitons exist. Explosions occur when eigenvalues in the linear stability analysis for the ground-state stationary solitons have positive real parts. We also study transition from exploding fronts to exploding solitons and observed extremely asymmetric soliton explosions.
Keywords: Ginzburg–Landau equation; Dissipative soliton; Exploding soliton (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475405001023
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:69:y:2005:i:5:p:526-536
DOI: 10.1016/j.matcom.2005.03.006
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().