EconPapers    
Economics at your fingertips  
 

Solitary waves and fundamental solution for Ostrovsky equation

Vladimir Varlamov and Yue Liu

Mathematics and Computers in Simulation (MATCOM), 2005, vol. 69, issue 5, 567-579

Abstract: The Ostrovsky equation describes the propagation of one-dimensional long waves in shallow water in the presence of rotation (Coriolis effect). In this model dispersion is taken into account and dissipation is neglected. It is proved that existence and non-existence of solitary waves depends on the sign of the dispersion parameter which can be either positive or negative. A fundamental solution of the linear Cauchy problem for Ostrovsky equation is constructed. Special function representation for it is obtained. Some properties of the fundamental solution are established and its higher-order asymptotics is obtained as the rotation parameter tends to zero.

Keywords: Solitary waves; Fundamental solution; Ostrovsky equation (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475405001047
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:69:y:2005:i:5:p:567-579

DOI: 10.1016/j.matcom.2005.03.003

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:69:y:2005:i:5:p:567-579