The effect of dissipation on solutions of the complex KdV equation
Jiahong Wu and
Juan-Ming Yuan
Mathematics and Computers in Simulation (MATCOM), 2005, vol. 69, issue 5, 589-599
Abstract:
It is known that some periodic solutions of the complex KdV equation with smooth initial data blow up in finite time. In this paper, we investigate the effect of dissipation on the regularity of solutions of the complex KdV equation. It is shown here that if the initial datum is comparable to the dissipation coefficient in the L2-norm, then the corresponding solution does not develop any finite-time singularity. The solution actually decays exponentially in time and becomes real analytic as time elapses. Numerical simulations are also performed to provide detailed information on the behavior of solutions in different parameter ranges.
Keywords: Complex KdV–Burgers equation; Dissipation; Global well-posedness (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475405001060
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:69:y:2005:i:5:p:589-599
DOI: 10.1016/j.matcom.2005.03.002
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().