A simulation-based hyperparameter selection for quantile estimation of the generalized extreme value distribution
Jeong-Soo Park
Mathematics and Computers in Simulation (MATCOM), 2005, vol. 70, issue 4, 227-234
Abstract:
A systematic way of selecting hyperparameters of the prior on the shape parameter of the generalized extreme value distribution (GEVD) is presented. The optimal selection is based on a Monte Carlo simulation in the generalized maximum likelihood estimation (GMLE) framework. A scaled total misfit measure for the accurate estimation of upper quantiles is used for the selection criterion. The performance evaluations for GEVD and non-GEVD show that the GMLE with selected hyperparameters produces more accurate quantile estimates than the MLE, the L-moments estimator, and Martins–Stedinger’s GMLE.
Keywords: Beta distribution; Hydrology; Maximum likelihood estimation; L-moment estimation; Penalized likelihood; Shape parameter (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475405002132
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:70:y:2005:i:4:p:227-234
DOI: 10.1016/j.matcom.2005.09.003
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().