EconPapers    
Economics at your fingertips  
 

Reliable computation of a multiple integral involved in the neutron star theory

F. Jézéquel, F. Rico, J.-M. Chesneaux and M. Charikhi

Mathematics and Computers in Simulation (MATCOM), 2006, vol. 71, issue 1, 44-61

Abstract: The following multiple integral is involved in the neutron star theory:τ(ε,v)=1ω(ε)∫0π/2dθsin⁡(θ)∫0∞dnn2∫0∞dph(n,p,θ,ε,v)whereh(n,p,θ,ε,v)=ψ(z)ϕ(n−ε−z)+ψ(−z)ϕ(n−ε+z)−ψ(z)ϕ(n+ε−z)−ψ(z)ϕ(n+ε+z)andz=p2+(vsin⁡(θ))2,ψ(x)=1exp⁡x+1,ϕ(x)=xexp⁡x−1.ω(ε) is a normalization function.

Keywords: Neutron star; Numerical validation; Multiple integral; Gauss–Legendre method; CESTAC method; Discrete Stochastic Arithmetic (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475405002375
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:71:y:2006:i:1:p:44-61

DOI: 10.1016/j.matcom.2005.11.014

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:71:y:2006:i:1:p:44-61