EconPapers    
Economics at your fingertips  
 

A new scheme for sensorless induction motor control drives operating in low speed region

Rachid Beguenane, Mohand A. Ouhrouche and Andrzej M. Trzynadlowski

Mathematics and Computers in Simulation (MATCOM), 2006, vol. 71, issue 2, 109-120

Abstract: A novel simple stator resistance estimation technique for high-performance induction motor drives is proposed. It makes use of a synchronously revolving reference frame aligned with the stator current vector, so that the resistance can be straightforwardly derived from the mathematical model of the induction motor. A sensorless direct field orientation scheme is employed to validate the proposed solution, with the drive operating in the critical area of low speeds. A combination of two observers is used: a Kalman filter observer to estimate the rotor flux, and a MRAS observer for speed estimation. The stator resistance estimator alleviates the usual performance degradation of MRAS-based drives at low speeds, caused by the thermal drift of stator resistance. Computer simulations, including realistic disturbances, show high effectiveness of the described approach.

Keywords: Induction motor control drives; Stator resistance estimation; Direct field orientation; Kalman filters; MRAS (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475406000036
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:71:y:2006:i:2:p:109-120

DOI: 10.1016/j.matcom.2006.01.001

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:71:y:2006:i:2:p:109-120