A fractional step lattice Boltzmann method for simulating high Reynolds number flows
C. Shu,
X.D. Niu,
Y.T. Chew and
Q.D. Cai
Mathematics and Computers in Simulation (MATCOM), 2006, vol. 72, issue 2, 201-205
Abstract:
A fractional step lattice Boltzmann scheme is presented to greatly improve the stability of the lattice Boltzmann method (LBM) in modelling incompressible flows at high Reynolds number. This method combines the good features of the conventional LBM and the fractional step technique. Through the fractional step, the flow at an extreme case of infinite Reynolds number (inviscid flow) can be effectively simulated. In addition, the non-slip boundary condition can be directly implemented.
Keywords: Lattice Boltzmann method; Fractional step; High Reynolds numbers (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475406001480
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:72:y:2006:i:2:p:201-205
DOI: 10.1016/j.matcom.2006.05.014
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().