Numerical simulation of two-phase flows in the presence of a magnetic field
T. Tagawa
Mathematics and Computers in Simulation (MATCOM), 2006, vol. 72, issue 2, 212-219
Abstract:
A set of non-dimensional model equations, which can simulate incompressible, immiscible two-phase flows in the presence of a magnetic field, has been derived and solved numerically with a finite difference method using the HSMAC algorithm. In this study, dynamics of a falling droplet of liquid metal into a horizontal liquid metal layer and of a rising air bubble in water subject to a magnetic field are presented as examples. The numerical results reveal that the Lorentz force acts to dampen the motion of electric conducting fluid as the Hartmann number increases. On the other hand, even for ordinary non-conducting fluids such as water and air, a substantial body force due to magnetization influences the air bubble behaviour in water under a gradient magnetic field.
Keywords: Two-phase flow; Magnetic susceptibility; Electromagnetic force (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475406001534
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:72:y:2006:i:2:p:212-219
DOI: 10.1016/j.matcom.2006.05.040
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().