Lattice Boltzmann simulation on porous structure and soot accumulation
Kazuhiro Yamamoto,
Shingo Satake,
Hiroshi Yamashita,
Naoki Takada and
Masaki Misawa
Mathematics and Computers in Simulation (MATCOM), 2006, vol. 72, issue 2, 257-263
Abstract:
In this study, using the lattice Boltzmann method, we simulate soot accumulation in porous media to examine the particle trap in a diesel particulate filter (DPF). The porous media are numerically formed for different inner structure with given porosity. The porous structure similar to the real sample, Ni–Cr metal, can be obtained, where the pressure fields in both cases are almost the same. In the simulation of soot accumulation, the velocity field is changed when the soot is attached to the porous wall. The pressure drop is largely increased. Interestingly, the friction factor is smaller than experimentally predicted value by Ergun equation.
Keywords: Lattice Boltzmann method; Soot; Porous media; Diesel particulate filter (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475406001546
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:72:y:2006:i:2:p:257-263
DOI: 10.1016/j.matcom.2006.05.021
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().