Variable projections neural network training
V. Pereyra,
G. Scherer and
F. Wong
Mathematics and Computers in Simulation (MATCOM), 2006, vol. 73, issue 1, 231-243
Abstract:
The training of some types of neural networks leads to separable non-linear least squares problems. These problems may be ill-conditioned and require special techniques. A robust algorithm based on the Variable Projections method of Golub and Pereyra is designed for a class of feed-forward neural networks and tested on benchmark examples and real data.
Keywords: Neural networks; Variable projection algorithm (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475406001753
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:73:y:2006:i:1:p:231-243
DOI: 10.1016/j.matcom.2006.06.017
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().