EconPapers    
Economics at your fingertips  
 

A numerical study of the long wave–short wave interaction equations

H. Borluk, G.M. Muslu and H.A. Erbay

Mathematics and Computers in Simulation (MATCOM), 2007, vol. 74, issue 2, 113-125

Abstract: Two numerical methods are presented for the periodic initial-value problem of the long wave–short wave interaction equations describing the interaction between one long longitudinal wave and two short transverse waves propagating in a generalized elastic medium. The first one is the relaxation method, which is implicit with second-order accuracy in both space and time. The second one is the split-step Fourier method, which is of spectral-order accuracy in space. We consider the first-, second- and fourth-order versions of the split-step method, which are first-, second- and fourth-order accurate in time, respectively. The present split-step method profits from the existence of a simple analytical solution for the nonlinear subproblem. We numerically test both the relaxation method and the split-step schemes for a problem concerning the motion of a single solitary wave. We compare the accuracies of the split-step schemes with that of the relaxation method. Assessments of the efficiency of the schemes show that the fourth-order split-step Fourier scheme is the most efficient among the numerical schemes considered.

Keywords: Relaxation method; Split-step method; Long wave–short wave interaction equations; Solitary waves (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475406002540
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:74:y:2007:i:2:p:113-125

DOI: 10.1016/j.matcom.2006.10.016

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:74:y:2007:i:2:p:113-125