On a class of spatial discretizations of equations of the nonlinear Schrödinger type
P.G. Kevrekidis,
S.V. Dmitriev and
A.A. Sukhorukov
Mathematics and Computers in Simulation (MATCOM), 2007, vol. 74, issue 4, 343-351
Abstract:
We demonstrate the systematic derivation of a class of discretizations of nonlinear Schrödinger (NLS) equations for general polynomial nonlinearity whose stationary solutions can be found from a reduced two-point algebraic condition. We then focus on the cubic problem and illustrate how our class of models compares with the well-known discretizations such as the standard discrete NLS equation, or the integrable variant thereof. We also discuss the conservation laws of the derived generalizations of the cubic case, such as the lattice momentum or mass and the connection with their corresponding continuum siblings.
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847540600262X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:74:y:2007:i:4:p:343-351
DOI: 10.1016/j.matcom.2006.10.014
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().