EconPapers    
Economics at your fingertips  
 

On a class of spatial discretizations of equations of the nonlinear Schrödinger type

P.G. Kevrekidis, S.V. Dmitriev and A.A. Sukhorukov

Mathematics and Computers in Simulation (MATCOM), 2007, vol. 74, issue 4, 343-351

Abstract: We demonstrate the systematic derivation of a class of discretizations of nonlinear Schrödinger (NLS) equations for general polynomial nonlinearity whose stationary solutions can be found from a reduced two-point algebraic condition. We then focus on the cubic problem and illustrate how our class of models compares with the well-known discretizations such as the standard discrete NLS equation, or the integrable variant thereof. We also discuss the conservation laws of the derived generalizations of the cubic case, such as the lattice momentum or mass and the connection with their corresponding continuum siblings.

Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847540600262X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:74:y:2007:i:4:p:343-351

DOI: 10.1016/j.matcom.2006.10.014

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:74:y:2007:i:4:p:343-351