Algebraic multigrid methods for elastic structures with highly discontinuous coefficients
Yingxiong Xiao,
Ping Zhang and
Shi Shu
Mathematics and Computers in Simulation (MATCOM), 2007, vol. 76, issue 4, 249-262
Abstract:
In this paper, we propose two types of algebraic multigrid (AMG) methods to find the numerical solution of elastic structures with highly discontinuous coefficients. One is the interface preserving coarsening AMG method. The idea of this method is to capture the discontinuous behavior of the gradient of the displacement functions along the interfaces. It selects coarse grid points so that all the coarse grids are aligned with the interface for regular interface problems on structured grids and for irregular interface problems on unstructured grids in a purely algebraic way. As a result, AMG with simple linear interpolation and point block Gauss–Seidel smoothing is sufficient to obtain the usual rapid multigrid convergence. The process of coarse grid selection given in this paper can be performed in parallel. Another method introduced in this paper is an AMG method by applying a special block Gauss–Seidel smoother with blocks corresponding to the constant coefficient regions and their interfaces. The results of various numerical experiments in two dimensions are presented. It is shown from the numerical results that the resulting AMG methods are more robust and efficient than the commonly used AMG method in both CPU times and numbers of iteration for elastic structures with highly discontinuous coefficients.
Keywords: Interface preserving coarsening; Elastic structures; Jumps; Algebraic multigrid; Block smoothing (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475406002758
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:76:y:2007:i:4:p:249-262
DOI: 10.1016/j.matcom.2006.10.025
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().