A third order numerical scheme for the two-dimensional sine-Gordon equation
A.G. Bratsos
Mathematics and Computers in Simulation (MATCOM), 2007, vol. 76, issue 4, 271-282
Abstract:
A rational approximant of third order, which is applied to a three-time level recurrence relation, is used to transform the two-dimensional sine-Gordon (SG) equation into a second-order initial-value problem. The resulting nonlinear finite-difference scheme, which is analyzed for stability, is solved by an appropriate predictor–corrector (P–C) scheme, in which the predictor is an explicit one of second order. This scheme is accelerated by using a modification (MPC) in which the already evaluated values are used for the corrector. The behavior of the proposed P–C/MPC schemes is tested numerically on the line and ring solitons known from the bibliography, regarding SG equation and conclusions for both the mentioned schemes regarding the undamped and the damped problem are derived.
Keywords: Soliton; Sine-Gordon equation; Finite-difference method; Predictor–corrector (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475406003296
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:76:y:2007:i:4:p:271-282
DOI: 10.1016/j.matcom.2006.11.004
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().