EconPapers    
Economics at your fingertips  
 

Sextic spline solution of fifth-order boundary value problems

A. Lamnii, H. Mraoui, D. Sbibih and A. Tijini

Mathematics and Computers in Simulation (MATCOM), 2008, vol. 77, issue 2, 237-246

Abstract: There are few techniques to numerically solve fifth-order boundary-value problems (BVPs). In this paper two sextic spline collocation methods are developed and analyzed. The first one uses spline interpolants and the second is based on spline quasi-interpolants. They are both proved to be second-order convergent. Numerical results verify the order of convergence predicted by the analysis.

Keywords: Fifth-order boundary-value problems; Collocation method; Sextic spline interpolant; Quasi-interpolant (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475407002613
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:77:y:2008:i:2:p:237-246

DOI: 10.1016/j.matcom.2007.09.008

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:77:y:2008:i:2:p:237-246