Computer simulations of exponentially convergent networks with large impulses
Sannay Mohamad
Mathematics and Computers in Simulation (MATCOM), 2008, vol. 77, issue 4, 331-344
Abstract:
This paper demonstrates the use of a semi-discretization technique for obtaining a discrete-time analogue of an exponentially convergent network that is subject to impulses with large magnitude. Prior to implementing the analogue for computer simulations, we investigate its exponential convergence towards a unique equilibrium state and thereby obtain a family of sufficiency conditions governing the network parameters and the impulse magnitude and frequency. Although the time-step does not appear in the conditions that govern the network parameters, its value needs to be sufficiently small in order for the analogue displays correct convergence behaviour of the network when subjected particularly to large impulses.
Keywords: Semi-discretization; Discrete-time analogue; Impulses; Exponential stability (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475407001516
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:77:y:2008:i:4:p:331-344
DOI: 10.1016/j.matcom.2007.02.012
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().