EconPapers    
Economics at your fingertips  
 

Moving-body simulations using overset framework with rigid body dynamics

Roy Koomullil, Gary Cheng, Bharat Soni, Ralph Noack and Nathan Prewitt

Mathematics and Computers in Simulation (MATCOM), 2008, vol. 78, issue 5, 618-626

Abstract: The simulation of flow past bodies in relative motion is a challenging task due to the presence of complex flow features, moving grids, and rigid body movements under the action of external forces and moments. A generalized grid-based overset framework is presented for the simulation of this class of problems. The equations that govern the fluid flows are cast in an integral form and are solved using a cell-centered finite volume upwind scheme. The rigid body dynamics equations are formulated using quaternion and are solved using fourth-order Runge–Kutta (RK) time integration. The overset framework and the six degree of freedom (6-DOF) rigid body dynamics simulators are developed in a library form for easy incorporation into existing flow solvers. The details of the flow solver, the 6-DOF library, and the overset framework are presented in this paper along with the validation results of the developed system.

Keywords: Overset grids; Rigid body dynamics; Moving-body problems; Library approach (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475408001638
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:78:y:2008:i:5:p:618-626

DOI: 10.1016/j.matcom.2008.04.009

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:78:y:2008:i:5:p:618-626