EconPapers    
Economics at your fingertips  
 

Impulsive vaccination of SEIR epidemic model with time delay and nonlinear incidence rate

Zhong Zhao, Lansun Chen and Xinyu Song

Mathematics and Computers in Simulation (MATCOM), 2008, vol. 79, issue 3, 500-510

Abstract: In this paper, an SEIR epidemic disease model with time delay and nonlinear incidence rate is studied, and the dynamical behavior of the model under pulse vaccination is analyzed. Using the discrete dynamical system determined by the stroboscopic map, we show that there exists an infection-free periodic solution. Further, we show that the infection-free periodic solution is globally attractive when the period of impulsive effect is less than some critical value. Using a new modelling method, we obtain a sufficient condition for the permanence of the epidemic model with pulse vaccination. We show that time delay, pulse vaccination can bring different effects on the dynamic behavior of the model by numerical analysis. Our results also show the time delay is “profitless”. The main feature of this paper is to introduce time delay and impulse into the SEIR epidemic model and to give pulse vaccination strategies.

Keywords: Impulsive vaccination; Periodic solution; Time delay; Global attractivity; Permanence (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475408000967
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2008:i:3:p:500-510

DOI: 10.1016/j.matcom.2008.02.007

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:79:y:2008:i:3:p:500-510