Numerical optimal control of the wave equation: optimal boundary control of a string to rest in finite time
Matthias Gerdts,
Günter Greif and
Hans Josef Pesch
Mathematics and Computers in Simulation (MATCOM), 2008, vol. 79, issue 4, 1020-1032
Abstract:
In many real-life applications of optimal control problems with constraints in form of partial differential equations (PDEs), hyperbolic equations are involved which typically describe transport processes. Since hyperbolic equations usually propagate discontinuities of initial or boundary conditions into the domain on which the solution lives or can develop discontinuities even in the presence of smooth data, problems of this type constitute a severe challenge for both theory and numerics of PDE constrained optimization.
Keywords: Optimal control; Hyperbolic equation; Wave equation; Discretization method (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475408001110
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2008:i:4:p:1020-1032
DOI: 10.1016/j.matcom.2008.02.014
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().