Model-order reductions for MIMO systems using global Krylov subspace methods
Chia-Chi Chu,
Ming-Hong Lai and
Wu-Shiung Feng
Mathematics and Computers in Simulation (MATCOM), 2008, vol. 79, issue 4, 1153-1164
Abstract:
This paper presents theoretical foundations of global Krylov subspace methods for model order reductions. This method is an extension of the standard Krylov subspace method for multiple-inputs multiple-outputs (MIMO) systems. By employing the congruence transformation with global Krylov subspaces, both one-sided Arnoldi and two-sided Lanczos oblique projection methods are explored for both single expansion point and multiple expansion points. In order to further reduce the computational complexity for multiple expansion points, adaptive-order multiple points moment matching algorithms, or the so-called rational Krylov space method, are also studied. Two algorithms, including the adaptive-order rational global Arnoldi (AORGA) algorithm and the adaptive-order global Lanczos (AOGL) algorithm, are developed in detail. Simulations of practical dynamical systems will be conducted to illustrate the feasibility and the efficiency of proposed methods.
Keywords: Model-order reduction; Padé approximations; Global Krylov subspace; Multiple points moment matching; Rational Krylov subspace (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475407002546
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2008:i:4:p:1153-1164
DOI: 10.1016/j.matcom.2007.09.007
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().