Computation of functions of Hamiltonian and skew-symmetric matrices
N. Del Buono,
L. Lopez and
T. Politi
Mathematics and Computers in Simulation (MATCOM), 2008, vol. 79, issue 4, 1284-1297
Abstract:
In this paper we consider numerical methods for computing functions of matrices being Hamiltonian and skew-symmetric. Analytic functions of this kind of matrices (i.e., exponential and rational functions) appear in the numerical solutions of ortho-symplectic matrix differential systems when geometric integrators are involved. The main idea underlying the presented techniques is to exploit the special block structure of a Hamiltonian and skew-symmetric matrix to gain a cheaper computation of the functions. First, we will consider an approach based on the numerical solution of structured linear systems and then another one based on the Schur decomposition of the matrix. Splitting techniques are also considered in order to reduce the computational cost. Several numerical tests and comparison examples are shown.
Keywords: Hamiltonian matrices; Skew-symmetric matrices; Matrix functions (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475408001365
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2008:i:4:p:1284-1297
DOI: 10.1016/j.matcom.2008.03.011
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().