EconPapers    
Economics at your fingertips  
 

Descent methods for optimization on homogeneous manifolds

Elena Celledoni and Simone Fiori

Mathematics and Computers in Simulation (MATCOM), 2008, vol. 79, issue 4, 1298-1323

Abstract: In this article we present a framework for line search methods for optimization on smooth homogeneous manifolds, with particular emphasis to the Lie group of real orthogonal matrices. We propose strategies of univariate descent (UVD), methods. The main advantage of this approach is that the optimization problem is broken down into one-dimensional optimization problems, so that each optimization step involves little computation effort. In order to assess its numerical performance, we apply the devised method to eigen-problems as well as to independent component analysis in signal processing.

Keywords: Optimization on manifolds; Lie group actions; Eigen-problems; Independent component analysis; Signal processing (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475408001377
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2008:i:4:p:1298-1323

DOI: 10.1016/j.matcom.2008.03.013

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:79:y:2008:i:4:p:1298-1323