Quadratic spline quasi-interpolants and collocation methods
Françoise Foucher and
Paul Sablonnière
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 12, 3455-3465
Abstract:
Univariate and multivariate quadratic spline quasi-interpolants provide interesting approximation formulas for derivatives of approximated functions that can be very accurate at some points thanks to the superconvergence properties of these operators. Moreover, they also give rise to good global approximations of derivatives on the whole domain of definition. From these results, some collocation methods are deduced for the solution of ordinary or partial differential equations with boundary conditions. Their convergence properties are illustrated and compared with finite difference methods on some numerical examples of elliptic boundary value problems.
Keywords: Spline approximants; Numerical differentiation; Spline collocation methods (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475409001086
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:12:p:3455-3465
DOI: 10.1016/j.matcom.2009.04.004
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().