EconPapers    
Economics at your fingertips  
 

New criteria for globally exponential stability of delayed Cohen–Grossberg neural network

Shengshuang Chen, Weirui Zhao and Yong Xu

Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 5, 1527-1543

Abstract: This paper is concerned with analysis problem for the global exponential stability of the Cohen–Grossberg neural networks with discrete delays and with distributed delays. We first prove the existence and uniqueness of the equilibrium point under mild conditions, assuming neither differentiability nor strict monotonicity for the activation function. Then, we employ Lyapunov functions to establish some sufficient conditions ensuring global exponential stability of equilibria for the Cohen–Grossberg neural networks with discrete delays and with distributed delays. Our results are not only presented in terms of system parameters and can be easily verified and also less restrictive than previously known criteria. A comparison between our results and the previous results admits that our results establish a new set of stability criteria for delayed neural networks.

Keywords: Global exponential stability (GES); Lyapunov functional; Neural networks; Delays (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475408002395
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:5:p:1527-1543

DOI: 10.1016/j.matcom.2008.07.002

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:79:y:2009:i:5:p:1527-1543