EconPapers    
Economics at your fingertips  
 

A higher-order moment method of the lattice Boltzmann model for the Korteweg–de Vries equation

Guangwu Yan and Jianying Zhang

Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 5, 1554-1565

Abstract: In this paper, a lattice Boltzmann model for the Korteweg–de Vries (KdV) equation with higher-order accuracy of truncation error is presented by using the higher-order moment method. In contrast to the previous lattice Boltzmann model, our method has a wide flexibility to select equilibrium distribution function. The higher-order moment method bases on so-called a series of lattice Boltzmann equation obtained by using multi-scale technique and Chapman–Enskog expansion. We can also control the stability of the scheme by modulating some special moments to design the dispersion term and the dissipation term. The numerical example shows the higher-order moment method can be used to raise the accuracy of truncation error of the lattice Boltzmann scheme.

Keywords: Lattice Boltzmann model; Higher-order moment method; Korteweg–de Vries equation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475408002425
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:5:p:1554-1565

DOI: 10.1016/j.matcom.2008.07.006

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:79:y:2009:i:5:p:1554-1565