On the numerical approximation of a degenerated hyperbolic system
Magnus Strömgren and
Michael Hanke
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 5, 1585-1602
Abstract:
The heat exchanger in a heat pump system may be conveniently described by a degenerated hyperbolic system, namely the zero Mach-number limit of the Euler equations. This leads to a mixed hyperbolic/parabolic system with coupled time-dependent boundary conditions. We propose a method-of-lines discretisation by using an upwinding scheme. We derive stability estimates for the linearisation with frozen coefficients. The resulting differential–algebraic equation has a perturbation index of 2 and a weak instability with respect to the space step size. The latter property is validated experimentally even for the nonlinear system. In contrast, the perturbation index did not exceed one in the numerical experiments.
Keywords: Reduced Euler equations; Degenerate hyperbolic equations; Method-of-lines; Perturbation analysis; Partial differential–algebraic equations (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475408002450
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:5:p:1585-1602
DOI: 10.1016/j.matcom.2008.07.004
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().