EconPapers    
Economics at your fingertips  
 

Boundedness and stability of nonautonomous cellular neural networks with reaction-diffusion terms

Hongyong Zhao and Zisen Mao

Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 5, 1603-1617

Abstract: In this paper, we study a class of nonautonomous cellular neural networks with reaction-diffusion terms. By employing the method of variation parameter, applying inequality technique and introducing a lot of real parameters, we present some sufficient conditions ensuring the boundedness and globally exponential stability of the solutions for nonautonomous cellular neural networks with reaction-diffusion terms. The results obtained extend and improve the earlier publications. Finally, three examples with their numerical simulations are provided to show the correctness of our analysis.

Keywords: Cellular neural networks; Reaction-diffusion terms; Equilibrium point; Boundedness; Globally exponential stability (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475408002462
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:5:p:1603-1617

DOI: 10.1016/j.matcom.2008.07.008

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:79:y:2009:i:5:p:1603-1617