Maximum likelihood estimation via the extended covariance and combined square-root filters
M.V. Kulikova
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 5, 1641-1657
Abstract:
The method of maximum likelihood is a general method for parameter estimation and is often used in system identification. To implement it, it is necessary to maximize the likelihood function, which is usually done using the gradient approach. It involves the computation of the likelihood gradient with respect to unknown system parameters. For linear stochastic system models this leads to the implementation of the Kalman filter, which is known to be numerically unstable. The aim of this work is to present new efficient algorithms for likelihood gradient evaluation. They are more reliable in practice and improve robustness of computations against roundoff errors. All algorithms are derived in measurement and time updates form. The comparison with the conventional Kalman filter approach and results of numerical experiments are given.
Keywords: System identification; Maximum likelihood estimation; Kalman filter; Square-root filtering algorithms (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847540800284X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:5:p:1641-1657
DOI: 10.1016/j.matcom.2008.08.004
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().