EconPapers    
Economics at your fingertips  
 

Multiple stochastic integrals with Mathematica

A. Tocino

Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 5, 1658-1667

Abstract: In the construction of numerical methods for solving stochastic differential equations it becomes necessary to calculate the expectation of products of multiple stochastic integrals. Well-known recursive relationships between these multiple integrals make it possible to express any product of them as a linear combination of integrals of the same type. This article describes how, exploiting the symbolic character of Mathematica, main recursive properties and rules of Itô and Stratonovich multiple integrals can be implemented. From here, a routine that calculates the expectation of any polynomial in multiple stochastic integrals is obtained. In addition, some new relations between integrals, found with the aid of the program, are shown and proved.

Keywords: Stochastic differential equations; Multiple Itô integrals; Multiple Stratonovich integrals; Expectation; Mathematica (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475408002851
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:5:p:1658-1667

DOI: 10.1016/j.matcom.2008.08.005

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:79:y:2009:i:5:p:1658-1667