Exponential p-stability of impulsive stochastic Cohen–Grossberg neural networks with mixed delays
Xiaohu Wang,
Qingyi Guo and
Daoyi Xu
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 5, 1698-1710
Abstract:
In this paper, we study the impulsive stochastic Cohen–Grossberg neural networks with mixed delays. By establishing an L-operator differential inequality with mixed delays and using the properties of M-cone and stochastic analysis technique, we obtain some sufficient conditions ensuring the exponential p-stability of the impulsive stochastic Cohen–Grossberg neural networks with mixed delays. These results generalize a few previous known results and remove some restrictions on the neural networks. Two examples are also discussed to illustrate the efficiency of the obtained results.
Keywords: Exponential p-stability; Impulsive; Stochastic; Mixed delays; L-operator inequality (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475408002917
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:5:p:1698-1710
DOI: 10.1016/j.matcom.2008.08.008
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().