General linear methods for ordinary differential equations
John Butcher
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 6, 1834-1845
Abstract:
General linear methods were introduced as the natural generalizations of the classical Runge–Kutta and linear multistep methods. They have potential applications, especially for stiff problems. This paper discusses stiffness and emphasises the need for efficient implicit methods for the solution of stiff problems. In this context, a survey of general linear methods is presented, including recent results on methods with the inherent RK stability property.
Keywords: General linear methods; Stiff differential equations; Inherent Runge–Kutta stability (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475407001462
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:6:p:1834-1845
DOI: 10.1016/j.matcom.2007.02.006
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().