An algorithm for the recognition of levels of congestion in road traffic problems
Angélica Lozano,
Giuseppe Manfredi and
Luciano Nieddu
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 6, 1926-1934
Abstract:
Detection and recognition of the level of congestion at an intersection is a very important problem and a valuable source of information in traffic management. Although it is just one of all the aspects that make up a traffic management system, it seems to be a crucial point for gathering information. In this paper, we present a technique based on a k-means clustering algorithm for classification, which has been already successfully used in a number of pattern recognition problems, namely: as an algorithm for face recognition problems and in a number of medical diagnosis problems and it compares very well with the state of the art techniques.
Keywords: Vehicle detection; Image recognition; Traffic information (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475407002054
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:6:p:1926-1934
DOI: 10.1016/j.matcom.2007.06.008
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().