Aircraft design optimization
J.J. Alonso,
P. LeGresley and
V. Pereyra
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 6, 1948-1958
Abstract:
In this paper we describe briefly a set of procedures for the optimal design of full mission aerospace systems. This involves multi-physics simulations at various fidelity levels, surrogates, distributed computing and multi-objective optimization. Low-fidelity analysis is used to populate a database of inputs and outputs of the system simulation and Neural Networks are then designed to generate inexpensive surrogates. Higher fidelity is used only where is warranted and also to do a local exploration after global optimization techniques have been used on the surrogates in order to provide plausible initial values. The ideas are exemplified on a generic supersonic aircraft configuration, where one of the main goals is to reduce the ground sonic boom.
Keywords: Optimal design; Surrogates; Aerospace systems; Multi-objective optimization; Neural Networks (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475407002108
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:6:p:1948-1958
DOI: 10.1016/j.matcom.2007.07.001
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().