Optimal power split in a hybrid electric vehicle using direct transcription of an optimal control problem
Laura V. Pérez and
Elvio A. Pilotta
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 6, 1959-1970
Abstract:
To efficiently operate electromechanical systems powered by two energy sources, it is necessary to determine the instantaneous power split between sources in order to minimize the energy consumption of the whole system. In this work, this problem is posed as a nonlinear finite horizon optimal control problem with control and state constraints and is solved using a direct transcription approach. The problem is fully discretized in time and the resulting finite dimensional optimization problem is solved using a nonlinear programming code. This paper describes the application of direct transcription to the case of the hybrid electric vehicle (HEV) being developed in the Applied Electronics Group (GEA) at the University of Río Cuarto. The statement and discretization of the control problem, the setting for using the nonlinear programming code and several examples and comparisons with those obtained by other approaches are described.
Keywords: Direct transcription; Optimal control with constraints; Nonlinear programming; Hybrid electric vehicles (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475407001590
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:6:p:1959-1970
DOI: 10.1016/j.matcom.2007.03.006
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().