On the design of an obstacle avoiding trajectory: Method and simulation
Claudiu Pozna,
Fritz Troester,
Radu-Emil Precup,
József K. Tar and
Stefan Preitl
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 7, 2211-2226
Abstract:
The paper suggests a new mathematical construction for the potential field used in the design of obstacle avoiding trajectories. The main benefits of the proposed construction are the quickness of minimum computation and the compensation for the main drawbacks specific to the “traditional approaches” belonging to the potential field method in general. The potential field definition and its minimum computation concept are presented. Next the concept is included in a design method for obstacle avoiding trajectories. The method is expressed in the form of an algorithm for obstacle avoidance. In the following step a state-space controller is designed in order to control the car along that trajectory. Digital simulation results obtained for the complete dynamic model of a car well validate the method.
Keywords: Control; Obstacle avoiding trajectory; Potential field; Simulation; Trajectory design (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475408004217
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:7:p:2211-2226
DOI: 10.1016/j.matcom.2008.12.015
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().