Pseudospectral method of solution of the Fitzhugh–Nagumo equation
Daniel Olmos and
Bernie D. Shizgal
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 7, 2258-2278
Abstract:
We present a study of the convergence of different numerical schemes in the solution of the Fitzhugh–Nagumo equations in the form of two coupled reaction diffusion equations for activator and inhibitor variables. The diffusion coefficient for the inhibitor is taken to be zero. The Fitzhugh–Nagumo equations, have spatial and temporal dynamics in two different scales and the solutions exhibit shock-like waves. The numerical schemes employed are a Chebyshev multidomain method, a finite difference method and the method developed by Barkley [D. Barkley, A model for fast computer simulation of excitable media, Physica D, 49 (1991) 61–70]. We consider two different models for the local dynamics. We present results for plane wave propagation in one dimension and spiral waves for two dimensions. We use an operator splitting method with the Chebyshev multidomain approach in order to reduce the computational time. Zero flux boundary conditions are imposed on the solutions.
Keywords: Chebyshev multidomain; Fitzhugh–Nagumo equations; Spiral waves; Convergence (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475409000020
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:7:p:2258-2278
DOI: 10.1016/j.matcom.2009.01.001
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().