A second-order TVD implicit–explicit finite volume method for time-dependent convection-reaction equations
Gianmarco Manzini
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 8, 2403-2428
Abstract:
A class of conservative methods is developed in the more general framework of cell-centered upwind differences to approximate numerically the solution of one-dimensional non-linear conservation laws with (possibly) stiff reaction source terms. These methods are based on a non-oscillatory piecewise linear polynomial representation of the discrete solution within any mesh interval to compute pointwise solution values. The piecewise linear approximate solution is obtained by approximating the cell average of the analytical solution and the solution slope in every mesh cell. These two quantities are evolved in time by solving a set of discrete equations that are suitably designed to ensure formal second-order consistency. Several numerical tests which are taken from literature illustrate the performance of the method in solving non-stiff and stiff convection-reaction equations in conservative form.
Keywords: Conservation laws; Stiff reaction terms; Shock-capturing non-oscillatory methods; Implicit-explicit time-stepping methods (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475409000263
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:8:p:2403-2428
DOI: 10.1016/j.matcom.2009.01.011
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().