Realized volatility of index constituent stocks in Hong Kong
Ying-Foon Chow,
James T.K. Lam and
Hinson S. Yeung
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 79, issue 9, 2809-2818
Abstract:
High-frequency financial data are useful for studying the statistical properties of asset returns at lower frequencies, and they have been widely used to study various market microstructure related issues. However, most studies to date have been concentrated on markets in developed economies such as the stock markets in US or UK. This article aims to investigate the statistical properties of stock return volatility in Hong Kong. Using the sample of constituent stocks of Hang Seng Index (HSI) and Hang Seng China Enterprises Index (HSCEI or “H-shares Index”), we found that the mean daily realized volatilities of HSCEI stocks to be significantly higher than their HSI counterpart, while the correlations between H-shares stay relatively lower than that of HSI stocks. A long-memory effect is also reported for the logarithmic standard deviations of all shares, with most of them showing slow decay over the series.
Keywords: Equity markets; High-frequency data; Realized volatility; Correlation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475408003236
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:79:y:2009:i:9:p:2809-2818
DOI: 10.1016/j.matcom.2008.10.007
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().