EconPapers    
Economics at your fingertips  
 

Well-posedness of KdV with higher dispersion

Jennifer Gorsky and A. Alexandrou Himonas

Mathematics and Computers in Simulation (MATCOM), 2009, vol. 80, issue 1, 173-183

Abstract: It is shown that if the dispersion of the KdV equation is replaced by a higher order dispersion ∂xm, where m≥3 is an odd integer, then the critical Sobolev exponent for local well-posedness on the circle does not change. That is, the resulting equation is locally well-posed in Hs(T), s≥−1/2.

Keywords: KdV equation; Local well-posedness; Sobolev spaces (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475409001906
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2009:i:1:p:173-183

DOI: 10.1016/j.matcom.2009.06.007

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:80:y:2009:i:1:p:173-183