Internal solitary waves in the ocean: Analysis using the periodic, inverse scattering transform
Ivan Christov
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 80, issue 1, 192-201
Abstract:
The periodic, inverse scattering transform (PIST) is a powerful analytical tool in the theory of integrable, nonlinear evolution equations. Osborne pioneered the use of the PIST in the analysis of data form inherently nonlinear physical processes. In particular, Osborne's so-called nonlinear Fourier analysis has been successfully used in the study of waves whose dynamics are (to a good approximation) governed by the Korteweg–de Vries equation. In this paper, the mathematical details and a new application of the PIST are discussed. The numerical aspects of and difficulties in obtaining the nonlinear Fourier (i.e., PIST) spectrum of a physical data set are also addressed. In particular, an improved bracketing of the “spectral eigenvalues” (i.e., the ±1 crossings of the Floquet discriminant) and a new root-finding algorithm for computing the latter are proposed. Finally, it is shown how the PIST can be used to gain insightful information about the phenomenon of soliton-induced acoustic resonances, by computing the nonlinear Fourier spectrum of a data set from a simulation of internal solitary wave generation and propagation in the Yellow Sea.
Keywords: Internal solitons; Korteweg–de Vries equation; Nonlinear Fourier analysis; Inverse scattering transform; Anomalous signal loss (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847540900192X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2009:i:1:p:192-201
DOI: 10.1016/j.matcom.2009.06.005
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().